The development of a measurement tool to assess common Incorrect Beliefs About the causes of Cancer within the general public: The IBAC study

Samuel G. Smith, PhD CPsychol

Cancer Research UK Postdoctoral Fellow
University Academic Fellow
s.smith1@leeds.ac.uk
@sgsmith_87
Background

- Major risk factors for cancer have been identified:
 - Smoking, alcohol consumption, overweight, physical inactivity, diet

- Awareness of known risk factors is mixed:
 - UK national sample\(^1\): Mean = 5 out of 15 known risk factors
 - Lifestyle less likely to be attributed to cancer than heart disease\(^2\)

- Sizeable minority also endorse incorrect risk factors
 - UK National survey\(^1\): Endorsed at least one of the following:
 - Stress, food additives, pollution, power lines

1. Wardle et al., 2001 Public Health
2. Sanderson et al., 2009 Patient Educ Coun
• Prevalence of incorrect beliefs is unclear

• No reliable and validated tool exists for incorrect beliefs
 – Known risk factors assessed with CAM or ABC measures

• Current research uses myriad of incorrect risk factors
 – Generally rely on researcher intuition
 – Or use open-ended responses (recall rather than recognition)

• Public awareness campaigns difficult to evaluate

1. Smith et al., 2016 Prev Med
Aims

- To identify common incorrect beliefs about the causes of cancer within the general public

- Develop a reliable and valid tool of Incorrect Beliefs About Cancer (the IBAC tool)
Item generation – systematic review

- Talk tomorrow, McGowan
 15:27, Castle Suite)

- Public surveys / interviews
 - 1 incorrect risk factor

- 999 studies were identified

- 16 studies were included

- 54 incorrect beliefs identified
Item generation – Interviews

• 16 participants

• Purposively sampled, balanced across age, ethnicity, gender and occupation

• Content analysis = 33 incorrect beliefs
Item generation – Social media

- Lexis Nexis - cancer-related newspaper articles (Jul-Aug)

- Online comments from:
 - Independent, Times, Daily Mail, Mirror, BBC

- Tweets with ‘Cancer’ AND ‘Cause’ OR ‘Prevent’ OR ‘Treat’
 - Passive re-tweets and commercial tweets excluded
 - Beliefs had to be tweeted at least 10 times

- Content analysis:
 - 33,557 tweets or online comments reviewed
 - 93 incorrect beliefs were identified
Item generation - summary

- Systematic review: 54 incorrect beliefs
- Interviews: 33 incorrect beliefs
- Social media analysis: 93 incorrect beliefs
- PPI: 4 incorrect beliefs

Total: 184 incorrect beliefs

103 unique beliefs
Item refinement – researchers

- 3 researchers (SS, LS, JM), excluded if:
 - Association with cancer listed in IARC monograph
 - Could not test for a relationship with cancer (e.g. god, fate)
 - Cancer prevention or treatment rather than cause

- Similar items combined

- 42 beliefs remained in item pool
Item refinement – DELPHI study

- 13 experts (oncology, public health, GPs, psychology)

- Round 1:
 - List all incorrect beliefs they were aware of

- Round 2:
 - Combine 42 item pool with round 1
 - Indicate which items they had heard of
 - Create a ‘top 10’ of most popular incorrect beliefs

- Round 3:
 - Indicate which items should be excluded and included
 - No new items, but consensus on 13 beliefs
Item refinement – online survey

- Online survey (n=527)
- 42 item pool
- Principal component analysis
 - One-component model observed (all items >0.45 loading)
- Item exclusion criteria
 - <20% or >80% of participants provide correct answer (k=0)
 - <15% provide incorrect answer (k=25)
 - Items excluded within Delphi list round 2 (k=1)
Item validation – IBAC measure

‘How much do you agree that each of these can increase a person’s chance of developing cancer?’

<table>
<thead>
<tr>
<th></th>
<th>Strongly disagree</th>
<th>Disagree</th>
<th>Not sure</th>
<th>Agree</th>
<th>Strongly agree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure to electromagnetic frequencies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eating food containing additives</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Living near power lines</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeling stressed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eating food containing artificial sweeteners</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using cleaning products</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using mobile phones</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eating genetically modified food</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using aerosols containers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physical trauma, for example a punch or squeeze</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Using microwave ovens</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drinking from plastic bottles</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Item validation – sensitivity to change

- Non-medical students (n=86)

Baseline IBAC
- Intervention leaflet
 - 1-week IBAC
- Control leaflet
 - 1-week IBAC

Test-retest reliability

\[r=0.85, \ p<0.01 \]

M=88.3 P=0.002 M=80.3
Item validation – known groups

- Experts (oncology nurses, scientists, CRUK staff)
 - Experts (n=25): M=97.3
 - Students (n=86): M=80.6
 - P<0.001

- Establishes construct validity
Item validation – national survey (n=1967)

- 3.9% refusal rate
- Normally distributed
- $\alpha=0.86$
- Can be used alongside the CAM

Diagram:

- **UK national sample**
 - IBAC and CAM (n=1327) \quad CAM only (n=640)
 - M=5.8 \quad M=5.8
 - $P = N.S$
Item validation – Confirmatory factor analysis

• Two-factor better than one factor (p<0.001)
 – CAM and IBAC items should be considered as separate scales

• Model fit good; ‘physical trauma’ reduces fit (p<.001)
 – Item remains due to presence in all areas of generation phase

• Good fit statistics (BIC=38709; GFI=0.99; RMSEA=0.06)
Conclusion

- Identified a range of causal beliefs about cancer
- Series of iterative studies to develop a valid and reliable tool
- Public awareness campaigns\(^1\) can use IBAC within evaluation
- IBAC can be used alongside the CAM

1. Smith et al., 2016 Prev Med
Future steps

• Report the prevalence of incorrect beliefs
 – Stress (41%); food additives (40%); electromagnetic freq (33%)

• Link incorrect beliefs with outcomes
 – Physical activity, BMI, Fruit and Vegetable intake, Smoking, Alcohol
 – Screening uptake

• Investigate relationships between stigma, fear and IBAC

• Develop intervention to address incorrect beliefs
Acknowledgements

- Dr Lion Shahab (co-PI)
- Emma Beard
- Jennifer McGowan
- Emma Fox
- Chloe Cook
- Radhika Pal
- Jo Waller

Cancer Research UK / BUPA Foundation (C42785 / A20811)
Cancer Research UK (C42785 / A17965)
Thank you for listening

Sam Smith (s.smith1@leeds.ac.uk)