Does the risk of bias affect the results in HIV treatment adherence intervention trials?

A systematic review and meta-analysis of randomized controlled trials

M. de Bruin¹, B. Baack², H. W. Vosburgh², N. Crepaz², K. J. Marshall², M. Mullins², and C. M. Lyles²

¹Health Psychology Group, University of Aberdeen, Scotland
²Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia
Background

• Randomized controlled trials (RCTs) can provide the strongest causal evidence for the efficacy of interventions

• Various types of bias (systematic errors in results or inferences) can threaten this internal validity

• Systematic reviewers examine the risk of bias (RoB) to judge the validity of RCTs and weigh the quality of evidence

• Yet, very little empirical evidence showing impact RoB on outcomes in (meta-analysis of) behaviour change RCTs

1 Higgins, Altman, & Sterne (2011). Cochrane handbook (Chapter 8)
Objective

- Given the ...:
 - .. number of systematic reviews continuously conducted
 - .. widespread use of RoB tools in grading the evidence
 - .. impact of systematic reviews on policy and practice
 - .. little empirical support for these RoB criteria

.. to conduct a systematic review of behaviour change RCTs, code RoB, and examine the relationship between RoB and effect sizes using meta-analysis

- Domain: Interventions to promote adherence to antiretroviral medication among people with HIV
Methods: search strategy

• Search strategy:
 – Developed and conducted by 2 experienced librarians
 – Automated search in MEDLINE, EMBASE, PsycINFO, CINAHL
 – Manual search in 20 key journals to identify new studies that were not yet indexed
 – Reference lists and listserves were reviewed
 – Date: May 2012
Methods: study selection

• Study selection:
 – Published or in press from 01-01-1996 to 01-05-2012
 – Interventions targeting adherence among adult HIV patients
 – RCT design
 – Data on at least 1 of the 2 relevant outcomes: Medication adherence or Viral load

• Exclusion:
 – Directly observed therapy (not autonomous behaviour)
Methods: data extraction

• Independent coding by 2 trained reviewers, and discrepancies resolved with a 3rd reviewer
 – Primary articles and other study articles referenced
 – Study characteristics (e.g., location, dates)
 – Sample characteristics (e.g., target population, ethnicity)
 – Outcome information for adherence and viral load (e.g., assessment time, instrument used, viral load cut-off point)
 – Risk of bias

• Authors were contacted in case insufficient information was given to compute an effect size
Methods: RoB

• Cochrane tool:
 – Selection, performance, detection, attrition and reporting bias
 – Blinding of patients and health care personnel to treatment assignment not coded (blinding not possible)

• Other: participant incentives, a-priori power calculations, subjective versus objective measurement dependent, appropriate analyses in cluster-RCTs

• For analysis: low versus high/unknown risk of bias

Methods: analysis

• Analysis
 – Natural logarithm of OR [ln(OR)] calculated for each trial
 – A fixed effects model was used
 – Separate analyses conducted for adherence and viral load

 – Step 1: Stratified analyses of single variables, i.e., RoB and potential confounders (study, participant, measurement)

 – Step 2: Meta-regression analyses including RoB predictors and potential confounders with p < .10 in Step 1
Results: studies included

• Screened at title and abstract: N = 16,235 citations
• N = 80 unique studies included in quantitative synthesis

• Most trial conducted in USA (k=58, 62%)
• 1/3 published between 2010-2012 (k=26, 32%)
• Average sample size 186 at baseline and 146 at follow-up
• 75 trials reported adherence, and 59 viral load outcomes
• Majority used subjective adherence measures (k=42, 56%)
• 1/3 trials targeted patients starting treatment (k=29, 36%)
Results: risk of bias for adherence
Results: risk of bias for viral load
Results: adherence efficacy

• Overall efficacy
 – Adherence: OR=1.43; 95% CI=1.31, 1.56; k=75

• Variables p <.10* or p <.05** in stratified analyses
 – More recent study enrolment date (yes: more effective)**
 – Majority study sample of colour (yes: less effective)**
 – Random sequence generation sound (yes, larger effect)**
 – Overall attrition ≤30% (yes: larger effect)*
 – Differential attrition ≤ 10% (yes: larger effect)**
Results: adherence meta-regression

- Meta-regression of adherence on predictors

<table>
<thead>
<tr>
<th>Predictor variable</th>
<th>Adherenceb</th>
<th>β</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study enrollment date</td>
<td></td>
<td>0.0950</td>
<td>0.433</td>
</tr>
<tr>
<td>% persons of color in study sample</td>
<td></td>
<td>-0.0029</td>
<td>0.070</td>
</tr>
<tr>
<td>Random sequence generation (High/unclear risk vs low risk)</td>
<td></td>
<td>-0.1383</td>
<td>0.290</td>
</tr>
<tr>
<td>Overall attrition (High/unclear risk vs low risk)</td>
<td></td>
<td>0.1453</td>
<td>0.408</td>
</tr>
<tr>
<td>Differential attrition (High/unclear risk vs low risk)</td>
<td></td>
<td>-0.3402</td>
<td>0.035*</td>
</tr>
</tbody>
</table>
Results: viral load efficacy

• Overall efficacy
 – Viral load: OR=1.20; 95% CI=1.09, 1.32; k=59

• Variables p <.10* or p <.05** in stratified analyses
 – Cut-off viral load test ≤50 c/ml blood (yes: larger effects)*
 – Overall attrition ≤30% (yes: larger effects)*
 – Intent-to-treat analysis (yes: larger effects)*
Results: viral load meta-regression

- Meta-regression of viral load on predictors

<table>
<thead>
<tr>
<th>Predictor variable</th>
<th>HIV viral load</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Measurement type/Cutoff (binary, using cutoff greater than 50 copies/ml; reference=continuous)</td>
<td>0.0543</td>
<td>0.787</td>
<td></td>
</tr>
<tr>
<td>Measurement type/Cutoff (binary, using cutoff of ≤50 copies/ml; reference=continuous)</td>
<td>-0.1103</td>
<td>0.599</td>
<td></td>
</tr>
<tr>
<td>Overall incomplete data (High/unclear risk vs low risk)</td>
<td>-0.2047</td>
<td>0.197</td>
<td></td>
</tr>
<tr>
<td>Intent-to-treat analysis (High/unclear risk vs low risk)</td>
<td>-0.0996</td>
<td>0.566</td>
<td></td>
</tr>
</tbody>
</table>
Results: other

• Other:
 – No evidence of publication bias (funnel plot and Egger’s regression intercept test)
 – All other single RoB scores, and the total number of high RoB scores were unrelated to effect sizes
Discussion

• About 60% RoB scores low, 20% Unknown and 20% High

• Stratified and meta-regression analyses: mainly evidence for attrition bias on adherence effect sizes

• Objective outcomes (here: viral load) known to be less sensitive to bias\(^1\)

• Note the direction of effects: higher RoB, less efficacious

Conclusion

• Individual trials may be affected by several sources of bias, yet little evidence of their impact on total evidence-base.

• Should we downgrade the quality of the evidence base in this field based on all RoB scores, or just discriminate on attrition bias for adherence?

• Recommendations:
 – More experimental and meta-analysis evidence to gather empirical evidence on RoB in behaviour change trials
 – When grading the quality of the evidence-base, first examine whether it is actually affected by the criteria applied?
For questions, please contact

Marijn de Bruin
m.debruin@abdn.ac.uk

M. de Bruin¹, B. Baack², H. W. Vosburgh², N. Crepaz², K. J. Marshall², M. Mullins², and C. M. Lyles²

¹Health Psychology Group, University of Aberdeen, Scotland
²Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia