Cash for Questions

Welcome and Introductions.

Dr Anne Helme – Cancer Research UK

Dr Paul Leighton – NIHR Research Design Service EM
Introductions from you…

It would be nice to hear from each of you…

Where are you from?
How much experience of applying funding do you have?
What was the last / next grant you will apply for?

What do you think is the most important element of a funding proposal?
What do you think is the most challenging aspect?
Today....

Purpose of today:

1. To directly consider the process of applying for research funds in applied health research and behavioural medicine.

2. To think about the application as a process in its own right – which is in some ways distinct and detached from the quality of the research which is being proposed.

3. To offer insight about how to become more effective grant writers.

Conservative Goal:
You go away thinking differently about funding competitions and how to approach them.

Ambitious Goal:
You learn some new things that you can try out next time you apply to a funding competition.
Today….

Structure of the day…

<table>
<thead>
<tr>
<th>Time</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.00-</td>
<td>Introductions</td>
</tr>
<tr>
<td>10.15-</td>
<td>Research funding landscape for applied health and behavioural medicine.</td>
</tr>
<tr>
<td></td>
<td>coffee</td>
</tr>
<tr>
<td>11.30-</td>
<td>The application form and decision making process.</td>
</tr>
<tr>
<td></td>
<td>lunch</td>
</tr>
<tr>
<td>13.30-</td>
<td>Filling in the form, and making a case.</td>
</tr>
<tr>
<td></td>
<td>coffee</td>
</tr>
<tr>
<td>15.00-</td>
<td>Other people.</td>
</tr>
<tr>
<td>15.45-</td>
<td>Funding panel members.</td>
</tr>
<tr>
<td>16.30-</td>
<td>Closing comments.</td>
</tr>
</tbody>
</table>
My opening comments....

• Research funding allocation as competition; as a game to be played.

• The best research does not always get funded – the best grant applications do....

• Research ideas have to be presented to the right funding bodies and in the right wa

“Agreed. We fund only those proposals we can understand”
My opening comments....

- Grant writing is challenging...
 - Planning for complex processes and circumstances.
 - Demonstrating academic / clinical rigour.
 - Communicating complex and specialist ideas.
 - ‘Selling your idea’?

- Grant writing is a skill Some people are very good at it...
SESSION ONE:

RESEARCH FUNDING FOR APPLIED HEALTH AND BEHAVIOURAL MEDICINE
Who might fund me?
Research area:
Behavioural research relating to early diagnosis of cancer or cancer prevention

Types of award:
- Programme grants
- Project grants (including RCTs)
- Fellowships (early, mid, senior)
- Clinical fellowships
- Innovation grants
Research area:
Behavioural research relating to prevention of cardiovascular disease

Types of award:
- Programme grants
- Project grants
- Clinical Study Grants
- Fellowships (early, mid, senior)
- Clinical fellowships
Research area:
Behaviour of people, social groups and organisations and how they might respond to different interventions.

Types of award:
- Research grants (up to £2M)
- Future Research Leaders (early career)
- Themed research calls
Research area:
Population health and the impact of environmental factors, including the social environment, on health and development across the life course. Methodological research.

Types of award:
- Research grant
- Programme grant
- Partnership grant
- Fellowships (early, mid, senior)
- Clinical fellowships
- Public Health Intervention Development (PHIND)
Research area:
Public health research to improve the quality of healthcare. Social, economic and cultural factors that influence health, healthcare practices, and health interventions.

Types of award:
- Investigator awards
- Fellowships (early, mid, senior)
- Clinical fellowships
- Seed awards
- Collaborative awards
The NIHR

• The NIHR is major provider of funding for applied health and social care research within the NHS:
 - around £200M / year in research grants.
 - around £100M / year in fellowship awards.
 - funding for BRUs, BRCs, national schools for research.

• Manages 8 distinct research competitions, and 18 different fellowship competitions.

• Dedicated funding competition for Public Health Research and a trend towards health psychology & behavioural science across all competitions.
NIHR Research Priorities.

1. Primarily Applied Research!
 i. research which informs practice and improves outcomes.
 [clinical, economic and patient experience.]
 ii. Research which will generate patient benefit in the short / medium term.

2. Research which is timely.
 i. an issue which is important [NOW].
 ii. findings which will stand the test of time.

3. Value for money.
 i. cost is less important than good science and potential impact.
 ii. cost is less important than potential economic benefit/savings in the future.

4. Innovative.
 i. research which may lead to new ways of working / new treatments.
NIHR Research Priorities.

Less likely to prioritise, support and fund….

1. Basic science.
 i. where impact upon practice is too far in the future.

2. Work which is exploratory / knowledge generation.
 i. this includes basic science, social science, behavioural science, epidemiology, ….
 ii. there should always be an ‘intervention’ somewhere in the proposed work.

3. Local service development / evaluation.
 i. research must have broad relevance beyond the local.
 ii. it must be possible to implement research findings broadly.
What sort of grant should I be looking for?
PROJECT GRANTS

• TARGETED/FOCUSED RESEARCH PROPOSALS CENTRED ON ONE RESEARCH QUESTION/HYPOTHESIS
• 12-36 MONTHS
• £100K-£300K/YEAR
• CAN BE HELD BY EARLY CAREER RESEARCHERS – SOME EXPERIENCE USUALLY NECESSARY
• FUND STAFF AND RUNNING EXPENSES
FELLOWSHIPS

– The PERSON
– The project
– The environment

Opportunities

– Resources
– Protected time
– Connections, networks
– Route to independence
– Recognition
– Influence

“My award...is exactly what I need at this stage in my career - a long term, generous source of funding that lets me to invest in a core research programme, around which I can build the lab.”

CRUK Career Establishment Award holder
PROGRAMME GRANTS

• INTERRELATED STRANDS OF RESEARCH FOCUSED TOWARDS A PARTICULAR GOAL
• 5 YEARS, RENEWABLE
• COULD BE UP TO £2M/YEAR OR MORE
• SUBSTANTIAL RESEARCH EXPERIENCE AND PROVEN TRACK RECORD NECESSARY
• FUND STAFF AND RUNNING EXPENSES, SOMETIMES INFRASTRUCTURE AND TRAINING
SEED FUNDING/INNOVATION

- NOVEL, HIGH-RISK RESEARCH
- FEASIBILITY AND DEVELOPMENT WORK BEFORE APPLYING FOR FULL PROJECT GRANT
- 6-24 MONTHS
- <£100K
- CAN BE HELD BY EARLY CAREER RESEARCHERS
- FUND STAFF AND RUNNING EXPENSES
CASE STUDIES
Population Research Postdoctoral fellowships

Three-year fellowship covering salary and running expenses. For researchers within 6 years of completing their PhD. Clinical/health epidemiology, screening, prevention, early diagnosis, methodology. Support for training and development, secondments.

Dr Katriina Whitaker – 2012-15

Cancer symptom appraisal in everyday life: psychological and demographic influences
Cancer Prevention fellowships

Three-year fellowship covering salary, research assistant and running expenses. For researchers within 3-5 years of completing their PhD. Behaviour and lifestyle change relating to cancer prevention. Support for training and development, secondments.

Dr Alice Forster - 2014-17

Why are girls from Black and Asian minority ethnic backgrounds less likely to receive the human papillomavirus (HPV) vaccine? Developing and testing a complex psychological intervention to increase informed uptake
Population Research Project grants

Up to £100k/year for 3 years (salary, running expenses, equipment)
UK host institution but international collaborations welcomed
Open to early career researchers (3+ years post PhD)
Clinical/health epidemiology, screening, prevention, early diagnosis, methodology

Dr Christian von Wagner – 2014-16

Identifying demographic and psychosocial predictors of flexible sigmoidoscopy screening intentions and uptake
Population Research Programme grants

Up to £2.5M/year for 5 years (salary, running expenses, equipment, PhD students)
UK host institution but international collaborations welcomed
Clinical/health epidemiology, screening, prevention, early diagnosis, methodology

Professor Jane Wardle – 2012 - 17

Cancer Communication and Screening
-to improve uptake of colorectal cancer screening and reduce inequalities.
-to unravel the complex motivational effects of cancer fear.
-to discover how to promote informed choice.

Energy Balance
-to increase understanding of the associations between energy balance and cancer risk
-to test the effect of weight loss on molecular pathways hypothesised to underlie the association with cancer
-to develop a cost-effective behavioural intervention.
Innovation grants

Up to £20k/12 months
Created via collaboration during 3-day workshop
Open to early career researchers (post PhD) and non-academics
Behaviour and lifestyle change relating to cancer prevention

Dr Lucy Hackshaw-McGeagh – 2014-15
Dr Kimberly Jamie
Dr Roisin O’Neill

A week in your life

To understand the everyday lives of teenage mothers from their own perspective in order to identify the barriers, and facilitators, of good health behaviours, by using photo elicitation.
Navigating the NIHR.

AN IDEA FOR CHANGE.

NOT NIHR

Evidence that there is a problem

Evidence that your solution is safe and ‘works’

Evidence that your solution works IN the NHS.

‘Evidence that your solution works in ANY NHS setting

Evidence that it makes economic sense

THINGS CHANGE IN PRACTICE.

EME, i4i,

HTA, PHR, PGfAR

Research and innovation in the NHS.

Your position on this pathway may dictate your funder in the NIHR portfolio.
Navigating the NIHR.

• Example 1....
 HEAR – IT
 Nottingham Hearing Biomedical Research Unit (2011-2013)
 £235,000 (RfPB PB-PG-0909-20294)
Navigating the NIHR.

• Example 2….
 Keeping Children Safe at Home
 Nottinghamshire Healthcare NHS Trust (2009-2014)
 £2.1M (PGfAR award RP-PG-0407-10231)
QUESTIONS?
Coffee break.
SESSION TWO:

THE APPLICATION FORM AND DECISION MAKING PROCESS
The application form.

- The application form is your vehicle for ‘selling’ your research idea to the funder.

- Take a look at the **NIHR standard application form**…
 - Which bits could you easily fill in?
 - Which bits might you find difficult? Why?
 - Do any sections surprise you?
 - Look at the word limits, what do they tell you?
The anatomy of a form.

- All application forms (irrespective of funder) will include some of these, many will include all:
 - Details about you.
 - Details about your organisation.
 - Details about the context of the proposed research.
 - Details about ethics.
 - Details about management and governance.
 - Details about money.
 - Details about intellectual property.
 - Details about translation to practice.
 - Details about dissemination and publication.
 - Details about possible reviewers.
 - As well as details about your research plan.

- There is a lot to get right.
The application form.

• How would you read this form? Where would you start?
HOW ARE THE DECISIONS MADE?
The funding cycle

Application

Peer Review

Committee

Grant Award
The funding cycle

Application

ONLINE APPLICATION
- Electronic grants management system
- Application, management, review
- Electronic approvals
The funding cycle

ASSESSING THE APPLICATIONS

– International comparisons
– Confidentiality is important
– As much feedback as possible
The funding cycle

PROGRAMMES AND CLINICAL TRIALS
- Outline applications
- Expert review panels
- Full committee

FELLOWSHIPS
- Preliminary application
- Full application
- Interview panel

Committees and panels
In Committee

- Meet 1-3 times a Year
- Up to 30 researchers / doctors / patients sit on the Committee
- Budget £300k-£15M per meeting
- Grants range from £20k - £2M per year
Making the decision

Value for money

Project

Person

Place

CRUK’s 5 year strategy

Peer review

Grant award

BUDGET
Money well spent?

Science
- Updates and reports
- Networking meetings
- Achievements and outputs

Money
- Reconciliation: we only pay for what we said we would
- Audit: we only pay for research

Engagement
The NIHR Funding Cycle...

- Most NIHR research funding competitions operate on 3 calls per year.
- NIHR fellowship programmes have 1 call per year.
- Most NIHR funding competitions operate both researcher led and commissioned calls.
- Current PHR calls [deadline 19/12].
 - Interventions for hand hygiene to reduce incidence of infectious disease in schools
 - Needle and Syringe Programmes (NSPs)
 - Interventions to Reduce Sexually Transmitted Infections (STIs) in Young People
 - Interventions to reduce substance use by children and young people
 - Social Marketing Interventions to Reduce Unintended Teenage Pregnancy
 - Weight loss services for men
The NIHR Selection Process ...

• Application form [outline or full].
• Administrative screening.
• Peer review.

 Upto 6 reviewers from a range of backgrounds.
• A Panel meeting and decision.

 Mixed profession panel – all experts (clinical, academic, methodological, lay). Potentially no-one from your field!
• An interview.

 [for i4i, PGfAR & NIHR fellowships]
• Recommendations & Correspondence.
• Amendments.
• A final decision.
The NIHR Selection ...

• Competition is fierce.
- The NIHR is a generous funder (many competitions have no upper limit) which makes it attractive to high calibre and experienced researchers.
- It is however a conservative funder which sets high standards and looks for value for money.
- To date it has not exhausted its funds, yet still rejects a lot of applications.

• Selection is complex.
- For researcher-led competitions - assessment is complex: a mix of clinical area, methodological/scientific assessment, practical application, research team.
- Judgement by a multidisciplinary panel adds to this - you can’t presume that everyone will automatically understand what you are proposing.
- Decisions are often made in extended meetings (over 1 or 2 days) where many bids are considered quickly. Your work many only be considered for 20 minutes.
Committee Members’ Top Tips

Show clearly how the application builds on existing knowledge
 – Science not hope!

Spend time on the abstract
 – Include all aspects of the study
 – Make sure clear, concise, and worked through

Make very step of the methods 100% clear
 – Sample, procedure, data collection, data analysis
 – Make sure you show how objectives will be clearly addressed or research questions answered
Committee Members’ Top Tips

Tell a coherent, easily understood story
 – Why, what, how, when, impact, team, how resourced

Simple ideas appeal!
 – Too many studies with way too many components, and the research questions become lost.

Don't skimp on the analysis section.
 – Some grants fail through imprecise descriptions of analysis of data (e.g. statistical, qualitative etc).

Get the right team

START EARLY!
HOW WOULD YOU SPEND £1M ON RESEARCH?
Now you control the budget!

- You are the funding committee

- Your budget is £1 million

- You have four applications to consider, but they add up to £1.8 million

So which projects would you fund?

Please discuss each project with your group and nominate a Chair who will give the reasons for your decision
Things to consider...

- Relevance to cancer research
- Quality of scientific plan
- Significance and impact of research
- Novelty/originality
- Feasibility to carry out objectives
- Track record of the applicant
1. Research project: Clinical Trial

Dr H is a basic scientist. He currently runs a research group at the University of Birmingham. He is applying for three years project grant funding to undertake a clinical trial. He has not yet begun recruitment for the trial but is working with trialists in Birmingham. They aim to recruit 200 glioblastoma patients to try a new drug targeting a signalling pathway, but not much detail is given. The drug is provided by industry at no cost.

Cancer relevance:

Glioblastoma multiforme (GBM) is the most common and most aggressive malignant primary brain tumour, accounting for 52% of all functional tissue brain tumour cases and 20% of all intracranial tumours. There are only 2–3 cases per 100,000 in Europe and North America.

Cost:
£600,000 in staff and research costs
1. Research project: Clinical Trial

Dr H is a basic scientist. He currently runs a research group at the University of Birmingham. He is applying for three years project grant funding to undertake a clinical trial. He has not yet begun recruitment for the trial but is working with trialists in Birmingham. They aim to recruit 200 glioblastoma patients to try a new drug targeting a signalling pathway, but not much detail is given. The drug is provided by industry at no cost.

Cancer relevance:

Glioblastoma multiforme (GBM) is the most common and most aggressive malignant primary brain tumour, accounting for 52% of all functional tissue brain tumour cases and 20% of all intracranial tumours. There are only 2–3 cases per 100,000 in Europe and North America.

Cost:

£600,000 in staff and research costs

Not funded by the Clinical Trials Award & Advisory Committee
1. Research project: Clinical Trial

Dr H is a basic scientist. He currently runs a research group at the University of Birmingham. He is applying for three years project grant funding to undertake a clinical trial. He has not yet begun recruitment for the trial but is working with trialists in Birmingham. They aim to recruit 200 glioblastoma patients to try a new drug targeting a signalling pathway, but not much detail is given. The drug is provided by industry at no cost.

Cancer relevance:

Glioblastoma multiforme (GBM) is the most common and most aggressive malignant primary brain tumour, accounting for 52% of all functional tissue brain tumour cases and 20% of all intracranial tumours. There are only 2–3 cases per 100,000 in Europe and North America.

Cost:
£600,000 in staff and research costs

Not funded by the Clinical Trials Award & Advisory Committee
2. Research project: DNA damage

Dr P has a longstanding interest in the mechanisms underlying DNA damage. He focuses on how defects in these pathways contribute to human disease and the development of cancer.

He has recently been awarded a Lister research prize in recognition of his work. He is requesting funding for a three year project to understand the biological relevance of MDC1 protein interactions with other DNA repair proteins and its response to UV radiation.

Two of the three referee reports were highly supportive of the application. One referee questioned the relevance of basic biochemistry to cancer research.

Cancer Relevance:
DNA damage and defective damage responses are relevant in almost all cancer types.
CRUK funds many fundamental biology projects to understand the mechanisms involved in the development of cancer.

Cost:
£300,000 in staff and research costs
2. Research project: DNA damage

Dr P has a longstanding interest in the mechanisms underlying DNA damage. He focuses on how defects in these pathways contribute to human disease and the development of cancer.

He has recently been awarded a Lister research prize in recognition of his work. He is requesting funding for a three year project to understand the biological relevance of MDC1 protein interactions with other DNA repair proteins and its response to UV radiation.

Two of the three referee reports were highly supportive of the application. One referee questioned the relevance of basic biochemistry to cancer research.

Cancer Relevance:
DNA damage and defective damage responses are relevant in almost all cancer types. CRUK funds many fundamental biology projects to understand the mechanisms involved in the development of cancer.

Cost:
£300,000 in staff and research costs

Funded by the Science Committee
2. Research project: DNA damage

Dr P has a **longstanding interest** in the mechanisms underlying DNA damage. He focuses on how defects in these pathways contribute to human disease and the development of cancer.

He has recently been awarded a **Lister research prize** in recognition of his work. He is requesting funding for a three year project to understand the biological relevance of MDC1 protein interactions with other DNA repair proteins and its response to UV radiation.

Two of the three referee reports were highly supportive of the application. One referee questioned the relevance of basic biochemistry to cancer research.

Cancer Relevance:
DNA damage and defective damage responses are **relevant in almost all cancer types**. CR-UK funds many fundamental biology projects to understand the mechanisms involved in the development of cancer.

Cost:
£300,000 in staff and research costs

Funded by the Science Committee
3. Research project: Fellowship

Clinician Dr Q works for the MRC Cancer Centre in Glasgow. She has recently completed a PhD under the supervision of a colorectal cancer surgeon. She has published four papers from her previous PhD on how aspirin affects a specific cellular pathway - NFkB. She is looking to remain in the same group and is requesting four years funding, including her own salary, to look at the anti-tumour pathways which aspirin impacts on. The Fellowship Interview Panel was impressed with Dr Q’s answers to its questions.

Cancer Relevance:
Aspirin is known to prevent colorectal cancer. Worldwide, colorectal cancer causes 655,000 deaths/year.

Cost:
£500,000 to support Clinician Scientist and research costs for 4 years
Clinician Dr Q works for the MRC Cancer Centre in Glasgow. She has recently completed a PhD under the supervision of a colorectal cancer surgeon. She has published four papers from her previous PhD on how aspirin affects a specific cellular pathway - NFkB. She is looking to remain in the same group and is requesting four years funding, including her own salary, to look at the anti-tumour pathways which aspirin impacts on. The Fellowship Interview Panel was impressed with Dr Q’s answers to its questions.

Cancer Relevance:
Aspirin is known to prevent colorectal cancer. Worldwide, colorectal cancer causes 655,000 deaths/year.

Cost:
£500,000 to support Clinician Scientist and research costs for 4 years

Funded by the Training and Career Development Board
3. Research project: Fellowship

Clinician Dr Q works for the MRC Cancer Centre in Glasgow. She has recently completed a PhD under the supervision of a colorectal cancer surgeon. She has published four papers from her previous PhD on how aspirin affects a specific cellular pathway-NFkB. She is looking to remain in the same group and is requesting four years funding, including her own salary, to look at the anti-tumour pathways which aspirin impacts on. The Fellowship Interview Panel was impressed with Dr Q’s answers to its questions.

Cancer Relevance:
Aspirin is known to prevent colorectal cancer.
Worldwide, colorectal cancer causes 655,000 deaths/year.

Cost:
£500,000 to support Clinician Scientist and research costs for 4 years

Funded by the Training and Career Development Board
4. Research project: Epidemiology

Professor D is a well-respected epidemiologist, with a very large number of publications and a long history of CR-UK funding.

This is a three year project to initiate a new study looking at the interaction between environmental, lifestyle and genetic risk factors for cancer. In order to obtain statistically significant results, Professor D will need to recruit a large number of people.

Professor D presented a well written proposal. The external referees indicate that the study is important and could produce novel results. They also commented that the study contains long term objectives and that the analysis could not be completed within the 3 year period.

Cancer Relevance:
Looking at the interaction between environmental, lifestyle and genetic risk factors would help us to understand what causes cancer and how we could prevent it.

Cost:
£400,000 in staff and research costs
4. Research project: Epidemiology

Professor D is a well-respected epidemiologist, with a very large number of publications and a long history of CR-UK funding.

This is a three year project to initiate a new study looking at the interaction between environmental, lifestyle and genetic risk factors for cancer. In order to obtain statistically significant results, Professor D will need to recruit a large number of people.

Professor D presented a well written proposal. The external referees indicate that the study is important and could produce novel results. They also commented that the study contains long term objectives and that the analysis could not be completed within the 3 year period.

Cancer Relevance:
Looking at the interaction between environmental, lifestyle and genetic risk factors would help us to understand what causes cancer and how we could prevent it.

Cost:
£400,000 in staff and research costs

Not funded by the Population Research Committee - Resubmit
4. Research project: Epidemiology

Professor D is a well-respected epidemiologist, with a very large number of publications and a long history of CR-UK funding.

This is a three year project to initiate a new study looking at the interaction between environmental, lifestyle and genetic risk factors for cancer. In order to obtain statistically significant results, Professor D will need to recruit a large number of people.

Professor D presented a well written proposal. The external referees indicate that the study is important and could produce novel results. They also commented that the study contains long term objectives and that the analysis could not be completed within the 3 year period.

Cancer Relevance:
Looking at the interaction between environmental, lifestyle and genetic risk factors would help us to understand what causes cancer and how we could prevent it.

Cost:
£400,000 in staff and research costs

Not funded by the Population Research Committee - Resubmit
QUESTIONS?
FOR MORE INFORMATION....

Dr Paul Leighton
NIHR Research Design Service for the East Midlands
0115 9249924
paul.leighton@nottingham.ac.uk

Dr Anne Helme
Cancer Research UK
020 3469 5442
anne.helme@cancer.org.uk
Lunch.
Filling in Forms and making your case.

Dr Paul Leighton
The form is all you have...

• A clinician writing his first significant proposal for research funding…

“If I can explain to them in person they’ll understand what this is all about, and how significant it could be”

• An experienced clinical academic commenting on a bid in production.

“Remember, the reviewers will be looking at all manner of other projects in a short period of time. They will be befuddled. Make it easier for them to know what this is about.”
The message has to be right…

- A post-doc fellowship reflecting upon an unsuccessful interview…

 “Within a minute I knew that only 3 of them were listening to me, within five I knew that only 1 of them was following me…”

- NIHR Fellowship Programme Chairs report 2013 …

 “In this round the Panels were disappointed…; perhaps due to not having read and fully understood the guidance notes. It is vitally important that applicants thoroughly read the application guidance notes to understand exactly what each question is asking.”
Help the reader / reviewer / panel...

- Selection is complex!
 - Multiple & varied criteria for judgement.
 - Multidisciplinary panels.
 - High volume, high pressure, little time for each application.

- Selection is simple?
 - We fund what we understand?
 Probably not!!
 But, if we don’t understand we probably aren’t going to fund it.

“Agreed. We fund only those proposals we can understand”
Help the reader ...

Yes, grant-writing is a very specific skill. We busy, non-specialist panel members need applications that are easy to read, understand and remember. Grants' committee work is stressful and we don't have time to decipher incomprehensible proposals. All of us grant writers get rejected regularly, so you have to keep trying....

Your bid must convince funders that your research is worth the money. Give the funder the information and evidence they need; is your question important? Are you competent? Is the project likely to succeed? Is it good value?

The panel members know even less. They also have large numbers of very different applications to compare and rank, make your application memorable and convincing.

The referees may know something about your field, but not everything. They use criteria set by the funder to assess your application. Give them the information they need to do this.

The referees may know something about your field, but not everything. They use criteria set by the funder to assess your application. Give them the information they need to do this.

Get rid of jargon, long sentences, long paragraphs, adverbs, adjectives, acronyms, and abbreviations. Use more headings, short lists, bullet points, repetition and definitions. Try some grant-writing techniques from the book: priming, labelling, tag phrases, signposting, chunking & 'assert justify'.

Don't waste your best idea on one application and find ways of replicating ideas to fit different schemes. Can you vary the question? The method? The participants? The location? Work from a template cage for support that you can fit to different funding agency formats.

You need to find the right people to test your application & give feedback (not senior professors from the same field who never win grants). Get non-specialists to give you critical feedback using specific criteria. Kind, encouraging comments won't help you win grants.

 Luck is an important part of grant success. Grant-writing is a lottery and you have to keep playing. A rolling cycle of applications is good for your morale & you need to make bids as quickly & efficiently as possible.
Help the reader ...

- Good science / an important question are pre-requisites for funding – however, in themselves they do not guarantee funding.

- Grant writing is itself a technical challenge, a skill to master.

 - *Constructing your case.*
 Providing the right information in the right way. Being consistent and coherent. Being convincing.

 - *Communicating your case.*
 Providing the right information in a way which is engaging and accessible. An ‘easier’ read.

Constructing your case...

- At the heart of any research study is a research protocol – this is often an individual’s starting point when applying for funding to support the research.
 - But, this might not be the best starting point when trying to secure research funding!

- Protocols are ‘neutral’ / ‘objective’ / factual, they describe what you are going to do / have done.
 - Your funding application should perhaps be a sales pitch selling your ideas.
Construct a narrative....

For the NIHR most funded studies demonstrate a similar narrative....

- *The NHS has a problem.*

- *We think we have a solution.*
 - *This solution is sensible because.*

- *Through the proposed work we will confirm / develop / evaluate this solution.*
 - *Our approach to this is rigorous and systematic.*

- *If the solution works this is what we will do next.*

- *This is the impact that our research will have.*
4 key propositions...
[taken from Aldridge and Derrington (2012)]

- The importance proposition – this proposal asks an important question.
- The success proposition – this project is likely to answer the question.
- The value proposition – the likely gain from this project is worth the resources requested.
- The competence proposition – the applicant and team are competent to carry out the project.

How would you defend each of these propositions in your research proposal?

- Each proposition must be supported in multiple ways through your application, providing objective evidence where possible.
- Everything that goes into your application should address one of these propositions.
10 key sentences.
[taken from Aldridge and Derrington (2012)]

“A really good case for support consists of nothing more than the 10 key sentences and the text that fills in the detail and convinces the reader that the key sentences are true.”

A summary sentence; an importance sentence; multiple ‘we need to know’ sentences; project overview sentence; multiple sub-project overview sentences; a dissemination sentence.

Research Grant Cookbook Activity.

Read the description of each and start to draft sentences for your own research / area of practice.
Communicating your case...

“Good writing will not save bad ideas, but bad writing can kill good ones.”

(The Art of Grantsmanship - Professor Jacob Kraicer
http://www.hfsp.org/funding/art-grantsmanship)

May 2014 saw the launch of the ‘make it clear’ campaign.

• ‘Make it clear’ is a dedicated initiative to improve the quality of plain English summaries in research funding applications - but more than this stresses the importance of readability.

http://www.invo.org.uk/makeitclear/
Filling in the form.

• Two general points…..

• **Structured application forms**, and word and character limits, can be both a help and a hindrance ….

 • they flag what you need to include.
 • but, place tight restrictions on how much you can say.

• **Snappy titles and clever acronyms** can help make a study more memorable and stand out.

 • SWIFFT, DOME, HEAR-IT, SOCRATES....
Filling in the form.

• Some things are obvious, but worth saying (i).

• Answer all the questions!

• Answer clearly and concisely – word counts sometimes enforce brevity but this is not always a bad thing.

• Do not fall into the trap of padding sections so that you reach the word count, reviewers will not thank you for saying something in 500 words which could be said in 250.
Filling in the form.

• Some things are obvious, but worth saying (ii).

• Answer simply.

• Write in a clear, straightforward way. Keep your language simple. Be careful of acronyms and technical jargon. Use labels to simplify complex phenomena.

• Structuring your text using lists and bullet points can help with readability; standard research protocol headings, and checklists, can also aid the readability of your application.
Filling in the form.

• Some things are obvious, but worth saying (iii).

• **Write explicitly.**
 take little for granted, and presume that you need to explain and justify all elements of your research.

• **Write boldly.**
 balanced academic writing can detract from the impact that you are seeking [pros / cons /concs].
 Assert your point, then justify it.
Filling in the form.

• Some things are obvious, but worth saying (iv).

• **Plan** what you are going to say!

 – Establish the key points you want to make and work out where best in the form to place them.

 [think - 4 propositions?]

 – Try to **make a distinct point in each section of the form** even if it seems to be asking for the same thing as other sections.

 [use “signposts” and summaries to draw attention to the key points that you are making]
Filling in the form.

• Some things are obvious, but worth saying (v).

• The pleasures and pitfalls of repetition.

 – Reiterating and reinforcing the significance, potential and key points of your research can be an important element in making a strong case for being funded.

[explicitly link sections]
[prime key points to come]

– However, application forms can lend themselves to repetition: outlines/summaries / lay summaries, rationale/implications/implementation may cover the same ground.
Filling in the form.

• Some things are obvious, but worth saying (vi).

• Check your application thoroughly before submission.
 – Draft and re-draft your application until it is a polished piece of writing, proof read it several times to ensure that you are happy with the message it communicates.
 – Expose your application to peer-review to ensure that it makes sense to others; seek reviewers from different fields.
 – Give your reviewers time to review it fully, give yourself enough time to respond to any comment or change that they may suggest.
Filling in the form.

- Some things not on the page.

- **This takes time!**
 If you haven’t done this before doing it in a rush / at the last minute is perhaps a mistake.

- **Things that take time …**
 - identifying and liaising with potential collaborators.
 - consulting with patients and other stakeholders.
 - working out the research costs.
 - attributing costs.
 - Gaining official support and permissions.
The ‘make it clear’ campaign describes the importance of plain English summaries, and offers some guidance on how to produce them.

Take a look at the guidelines provided.

The campaign describes 5 bits of information to include in a plain English summary.

How would you describe the background to your proposed research and the proposed methods in a plain English summary?

http://www.invo.org.uk/makeitclear/
Coffee break.
Other people... bid writing as a team-sport.

Dr Paul Leighton
Bid writing as a team-sport.

• You cannot / should not do this alone.

• Applied health research is a team activity – no single person can run all aspects of a major research study.

• Similarly, bid writing is done by a collection of people each contributing distinct perspectives/skills.

• Possible stakeholders – PPI, governance and finance, collaborators.
Public and Patient Involvement in applied health research.

• For the NIHR specifically this is an important aspect of the research process, and a key criteria by which all funding applications are judged – no PPI no funding.

• PPI defined as *the active involvement of members of the public in the process of defining and delivering applied health research.*
 – It is not simply including the public in your research as participants, or disseminating your findings to them.

• Doing research with, not to or about members of the public.
Why?

• A question some clinicians/academics struggle with.

• Public and Patient Involvement as a form of social technology – it is a formal mechanism which legitimises research / makes it work.

• How does it do this?
 – With recall to notions of privileged knowledge.
 – With recall to discourses of citizenship / ethical concerns.
 – With recall to funding requirements / practical benefits.
• The public / patients / service users have a form of knowledge which is not only beneficial to research studies, but which is essential for research to be effective and well-founded.
 – Fundamentally the public / patients can have knowledge that practitioners and clinicians cannot, i.e. direct experience of a condition.
 – The public / patients may have a different perspective on a condition / intervention. Their insight might complete the jigsaw.
 – Public / patient insight can ensure that research, and subsequent interventions, are pertinent to their experiences, needs and preferences.

• Put simply patients know their world better than you do!
ii) ethical concerns.

• The public / patients / service users may be directly (or indirectly) affected by research; consequently, they should have the opportunity to contribute to it.
 – Broader concerns for social citizenship, equality and social inclusion suggest that the public / patients have a right to contribute to research which may affect them, shape society, utilise public monies.
 – Service user may be empowered through participation in research. They may develop new skills or experiences.

• Put simply patients have a right to shape research!
iii) practical benefits.

- Public and patients involvement may strengthen your research design and make your study more fundable.

 - PPI has practical benefits for undertaking research:
 - To recruit their peers (‘snowballing’).
 - To access ‘hard-to-reach’ groups.
 - To help disseminate & implement research findings.

- Put simply good PPI will make successful funding outcomes more likely.
‘How’ to PPI?

There is no simple model of how to do PPI, but:

• Start early – it takes time to identify the right people and for positive and productive working relationships to develop.

• Take PPI seriously & commit to the process – your research [and its translation into practice] will benefit. Don’t just tick the box, utilise the skills and insights of all stakeholders. Maintain involvement throughout the research process.

• Consider different mechanisms for involvement – public / patient representatives on management groups; a distinct public/patient steering group; public/patient researchers.

• Consider different types of participant – ‘expert’ patients; existing public/patient interest groups.
‘How’ to PPI?

There is no simple model of how to do PPI, but:

• Work hard at creating an inclusive working environment – be explicit about roles & expectations; be conscious of jargon and specialist language; offer support, training and mentorship to participants. Foster partnership!

• Involve a number of people – don’t be reliant upon 1 or 2 individuals; a small team of PPI might be more effective than isolated individuals.

• Take issues of payment & reimbursement seriously – no-one should be out of pocket; if clinicians/researchers are being paid why shouldn’t PPI? practical difficulties associated with benefits; payment in kind and other forms of reward.
‘How’ to PPI?

There is no simple model of how to do PPI, but:

• Work hard at creating an inclusive working environment – be explicit about roles & expectations; be conscious of jargon and specialist language; offer support, training and mentorship to participants. Foster partnership!

• Involve a number of people – don’t be reliant upon 1 or 2 individuals; a small team of PPI might be more effective than isolated individuals.

• Take issues of payment & reimbursement seriously – no-one should be out of pocket; if clinicians/researchers are being paid why shouldn’t PPI? practical difficulties associated with benefits; payment in kind and other forms of reward.
Public and Patient Involvement in applied health research.

- For the NIHR you will need to demonstrate evidence of at least 3 things:
 1. That you have consulted with stakeholders and they agree that your proposed research is worthwhile.
 2. That you have consulted with stakeholders and taken advice on appropriate study design, recruitment and study burden.
 3. That you have mechanisms in place to maintain stakeholder involvement in the management of the study.

How will you establish these 3 things in your proposal? Share your prior experience of PPI.
Governance and finance.

- All funding applications require administrative sign-off in one or more places.
 - This is sometimes harder to establish than you would imagine.
 - Support from partners is often overlooked.

- Changes to the NHS landscape mean that it can be hard to establish who will sponsor / assume liability for primary care and public health research.

- Organisations will have their own processes and systems – these rarely work as quickly as you want them to.
Governance and finance.

- Value for money is a key concern in funding allocation, and budgets are consequently scrutinized.

- Costing causes as much anxiety as any aspect of research development, especially for applied studies in the NHS.
 - ACAT in the NHS.
 - TRAC and fec in the univ sector.

- Get the costs right….
 - Too little worse than too much.
 - The correct rate?
 - 8% for a Chief Investigator?
 - 5% for a co-investigator?
 - 1% for steering committee chair?

- Get help!
Governance and finance.

• Intellectual Property, knowledge transfer and commercialisation?
 • Can be key selling points to a funder.
 • Are likely to need some protection.

• Get help!
The Research Team.

- Funders will expect you to present a research team which includes all necessary technical skills to complete the research…
 - medical statistics, health economics, clinical trials, behavioural science, social science, epidemiology, etc.
 - appropriate experience to perform? Complete?

- Funders will expect you to present a research team which includes all necessary clinical skills to complete the research…
 - clinical experts in the field, nurses + AHPs, etc.
 - appropriate research experience?

- Funders will expect you to present a research team which includes all necessary connections to complete the research…
 collaborating centres, commissioners, industry, community…
NIHR Panel Members

Dr. Heather Fortnum
Dr. Neil Coulson
Closing Comments.
A checklist of things to think about…

i. Be realistic about where you are at – your level of research skill and experience should inform what you propose to do.

ii. Find a question that really matters - talk to [clinical] colleagues ‘is this really the most important question to answer’.

iii. Consider current evidence base and establish a doable question [feasibility/pilot/definitive study?]

iv. Take time exploring funding opportunities – getting this right and identifying the right funding source (with regard to above) will save you wasting a lot of time.

v. The most common piece of advice about applying for funding is … read the guidelines!!
 But also … talk to those who manage / have been successful. Ask questions about the competition’s scope and processes.
vi. Give yourself lots of time to do this! if you don’t have time, don’t do it now.

vii. Don’t do this alone! You will not have all the requisite skills / experiences to run the whole research project.

viii. Expose your ideas / drafts to your colleagues. Get comment from clinicians, academics, patients, the public, anyone.

ix. Be realistic about what can be achieved in your research – identify and address barriers and limitations.

x. Don’t give up – rejection is an important part of this process. ‘The more I practice the luckier I get’