Serotonergic influences on eating behaviour

Lora Heisler
The energy balance equation

Intake = Expenditure

Neutral energy state
Stable weight

Intake < Expenditure
Negative energy state
Weight loss

Intake > Expenditure
Positive energy state
Weight gain

Calories
Thermogenesis
Physical activity
Basal metabolism
Obesity Treatment Targets

Food Intake – central

- Neurotransmitters: 5-HT, adrenaline, noradrenaline, histamine
- Neuropeptides: POMC, AgRP, NPY, Orexin, CRH
- Cannabinoids

Food Intake – peripheral

- GI peptides: CCK, GLP1, PYY, Ghrelin
- Pancreatic peptides: Insulin, glucagon, amylin
- Adipokines: Leptin, adiponectin

Physical activity

Thermogenesis

- Thyroid hormones
- β-adrenergic agonists
- Uncoupling proteins

Fat metabolism

- Adipocyte differentiation
- Adipogenesis
- Apoptosis

Fat absorption

- Lipase inhibitors
- Fatty acid transporters
5-HT medications at forefront of obesity treatment

Adapted from Heisler et al., Pharm Biochem Beh, 1997
5-HT medications withdrawn from clinical use
5-HT$_{2C}$ Receptors are primary target

Adapted from Lam & Heisler, *Expert Reviews in Molecular Medicine*, 2007
Melanocortin: Principal energy balance mediator

Adapted from Yeo and Heisler, *Nature Neurosci* 2012
Garfield et al., *Trends in Endo and Metab* 2009
Proposed Model:

- G_q 5-HT$_{2C}$Rs are expressed with POMC
- G_i 5-HT$_{1B}$Rs can indirectly influence POMC activity via GABA disinhibition
- MC4-Rs are required for 5-HT$_{2C}$R agonists to suppress food intake
5-HT$_2$C Rs are positioned to influence ARC POMC

Serotonin 5-HT$_2$C Receptor Agonist Promotes Hypophagia via Downstream Activation of Melanocortin 4 Receptors

Daniel D. Lam, Magdalena J. Przydzial, Simon H. Ridley, Giles S. H. Yeo, Justin J. Rochford, Stephen O’Rahilly, and Lora K. Heisler

Tony Coll’s POMC tau lacZ line, 5-HT$_2$C R antibody
5-HT$_{2C}$R agonists activate ARC POMC neurons

Serotonergic Drugs Dose-Dependently Depolarize GFP-POMC Neurons

In vivo, wild type

5-HT\textsubscript{2C}R-mediated energy balance via Pomc

Yong Xu et al, *Neuron* 2008 Joel Elmquist
Clinical significance of 5-HT$_{2C}$R agonists

FDA approves lorcaserin, first weight-loss drug since 1999

Once the Drug Enforcement Administration clears it, the drug will be marketed in the U.S. under the name Belviq. But the FDA's approval comes with a warning.

June 27, 2012 | By Melissa Healy, Los Angeles Times
Are ARC Pomc peptides the neurochemical mediators of lorcaserin?
Generation of 5-HT$_{2c}$R$^{\text{Cre}}$ mouse line and 5-HT$_{2c}$R$^{\text{YFP}:\text{POMC}^{\text{dsRED}}}$
Re-activation of Pomc gene in 5-HT$_{2C}$R expressing neurons
- Inactivation of *Pomc* gene in the ARC abrogates the appetite suppressive effect of lorcaserin

- ARC *Pomc* derived peptides are the neurochemical mediator communicating lorcaserin’s therapeutic appetite-suppressive effect
ARC POMC peptides are required for lorcaserin to suppress appetite.
Aging impairs Pomc tone

Rapamycin Ameliorates Age-Dependent Obesity Associated with Increased mTOR Signaling in Hypothalamic POMC Neurons

Shi-Bing Yang,1 An-Chi Tien,2 Gayatri Boddupilli,1,4 Allison W. Xu,5 Yuh Nung Jan,1 and Lily Yeh Jan1,*

Yang et al. 2012 (Neuron)

Burke et al., Endocrinology 2014
Lorcaserin over-rides diminished Pomc function with age

Burke et al., Endocrinology 2014
New drug may end the curse of the middle age spread

Sarah Knapton
Published 13/08/2014 | 00:00

Scientists discover secret to losing weight in middle-age

Scientists believe they have discovered what causes the middle age spare tyre.

Lorcaserin over-rides diminished Pomc function with age

Burke et al., Endocrinology 2014
ARC Pomc peptide post-translational processing is impaired with diet-induced obesity

Rapamycin Ameliorates Age-Dependent Obesity Associated with Increased mTOR Signaling in Hypothalamic POMC Neurons

Shi-Bing Yang, An-Chi Tien, Gayatri Boddupalli, Allison W. Xu, Yuh Nung Jan, and Lily Yeh Jan

Obesity Induces Hypothalamic Endoplasmic Reticulum Stress and Impairs Proopiomelanocortin (POMC) Post-translational Processing

Received for publication, April 9, 2013, and in revised form, April 25, 2013. Published, JBC Papers in Press: May 2, 2013, DOI 10.1074/jbc.M113.473443

Isin Çakır, Nicole E. Cyr, Mario Perello, Bogdan Patedakis Litvinov, Amparo Romero, Ronald C. Stuart, and Eduardo A. Niinimäki

A

7mg/kg

B

DIO mice
Lorcaserin overcomes impaired Pomc function with age and diet
Can a 5HT_{1B}R agonist prevent age and HFD inhibitory tone onto Pomc?

Proposed Model:
- G_q 5HT_{2C}Rs are expressed with POMC
- G_i 5HT_{1B}Rs can indirectly influence POMC activity via GABA disinhibition
- MC4-Rs are required for 5HT_{2C}R agonists to suppress food intake
5-HT₁B R agonists reduce an inhibitory input onto ARC Pomc

Michael Cowley - *Neuron* 2006
Combined 5-HT$_{2C}$R/5-HT$_{1B}$R agonists potentiate satiety

5-HT$_{2C}$R agonist WAY 161503
5-HT$_{1B}$R agonist CP 94,253

Doslikova et al. J Neurosci 2013
Proposed Model:

- $G_q\ 5-HT_{2C}$ Rs are expressed with POMC
- $G_i\ 5-HT_{1B}$ Rs can indirectly influence POMC activity via GABA disinhibition
- MC4-Rs are required for $5-HT_{2C}$R agonists to suppress food intake
5-HT$_{2C}$R agonists require MC4R to suppress appetite

Genetic inactivation of *Mc4r*, but not *Mc3r* attenuates responses to d-fenfluamine hypophagia

Re-expression of *Mc4r* only in Sim1 neurons restores d-fenfluramine anorexia in *Mc4r* nulls

(Adapted from Heisler et al., *Neuron* 2006)

(Yong Xu et al. *J. Neurosci* 2010)
SUMMARY

- ARC POMC is required for normal appetite and body weight regulation.
- Age and diet impair ARC Pomc basal activity and post translational processing.
- The subset of ARC POMC expressing 5-HT\textsubscript{2C}R are critical for appetite and glucoregulatory functions.
- 5-HT\textsubscript{2C}R agonist lorcaserin was able to bypass reduced Pomc function to suppress appetite.
- Combination of a 5-HT\textsubscript{2C}R agonist with a 5-HT\textsubscript{1B}R agonist significantly increased appetite suppression via an elevation of the number of Pomc neurons activated.
- Modulation of aspects of this discrete circuit may yield a more effective obesity pharmacotherapy.
ACKNOWLEDGEMENTS

Current and Former Lab Members
Al Garfield, PhD
Ollie Marston, PhD
Dan Lam, PhD
Barbora Doslikova
Ligang Zhou, MD, PhD
Luke Burke
Peppe D’Agostino, PhD
Sandy Chan, MPhil
Lourdes Valencia-Torres, PhD
Wendy Turner
Adam Tozer, PhD
Minos Kritikos, PhD
Teodora Georgescu
Dave Lyons, PhD
Cristian Olarte-Sanchez, PhD
Celine Cansell, PhD
Raffaella Chianese
Claudia Cristiano
Ana Paula Garcia, PhD
Jill Shaw

Collaborators
Joel Elmquist, PhD, DVM
Michael Cowley, PhD
Martin Myers, MD, PhD
Malcolm Low, PhD
Raffaele Capasso, PhD
Denis Burdakov, PhD
Mark Evans, MD, PhD
Andrew Butler, PhD
Tony Coll, MD, PhD
Robin Kanarek, PhD
UK Congress on Obesity 2014

University of Birmingham, Edgbaston Campus
Tuesday 16th September and Wednesday 17th September 2014